Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Ultrason Sonochem ; 105: 106857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552299

RESUMO

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Assuntos
Ananas , Antioxidantes , Fermentação , Extratos Vegetais , Iogurte , Iogurte/microbiologia , Iogurte/análise , Ananas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sonicação , Temperatura , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38320436

RESUMO

This study investigated the purification of bromelain obtained from pineapple fruit using a new adsorbent for immobilized metal ion affinity chromatography (IMAC), with chlorophyll obtained from plant leaves as a chelating agent. The purification of bromelain was evaluated in batches from the crude extract of pineapple pulp (EXT), and the extract precipitated with 50 % ammonium sulfate (EXT.PR), the imidazole buffer (200 mM, pH 7.2) being analyzed and sodium acetate buffer, pH 5.0 + 1.0 NaCl as elution solutions. All methods tested could separate forms of bromelain with molecular weights between ±21 to 25 kDa. Although the technique using EXT.PR stood out in terms of purity, presenting a purification factor of around 3.09 ± 0.31 for elution with imidazole and 4.23 ± 0.12 for acetate buffer solution. In contrast, the EXT methods obtained values between 2.44 ± 0.23 and 3.21 ± 0.74 for elution with imidazole and acetate buffer, respectively, for purification from EXT.PR has lower yield values (around 5 %) than EXT (around 15 %). The number of steps tends to reduce yield and increase process costs, so the purification process in a monolithic bed coupled to the chromatographic system using the crude extract was evaluated. The final product obtained had a purification factor of 6, with a specific enzymatic activity of 59.61 ± 0.00 U·mg-1 and a yield of around 39 %, with only one band observed in the SDS-PAGE electrophoresis analysis, indicating that the matrix produced can separate specific proteins from the total fraction in the raw material. The IMAC matrix immobilized with chlorophyll proved promising and viable for application in protease purification processes.


Assuntos
Ananas , Bromelaínas , Acetatos , Ananas/química , Bromelaínas/isolamento & purificação , Cromatografia de Afinidade/métodos , Imidazóis , Extratos Vegetais/química
3.
Arch Pharm (Weinheim) ; 357(1): e2300422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861276

RESUMO

Pineapple has been recognized for its potential to enhance health and well-being. This study aimed to gain molecular insights into the anti-inflammatory properties of fermented pineapple juice using multimodal computational studies. In this study, pineapple juice was fermented using Lactobacillus paracasei, and the solution underwent liquid chromatography-mass spectrometry analysis. Network pharmacology was applied to investigate compound interactions and targets. In silico methods assessed compound bioactivities. Protein-protein interactions, network topology, and enrichment analysis identified key compounds. Molecular docking explored compound-receptor interactions in inflammation regulation. Molecular dynamics simulations were conducted to confirm the stability of interactions between the identified crucial compounds and their respective receptors. The study revealed several compounds including short-chain fatty acids, peptides, dihydroxyeicosatrienoic acids, and glycerides that exhibited promising anti-inflammatory properties. Leucyl-leucyl-norleucine and Leu-Leu-Tyr exhibited robust and stable interactions with mitogen-activated protein kinase 14 and IκB kinase ß, respectively, indicating their potential as promising therapeutic agents for inflammation modulation. This proposition is grounded in the pivotal involvement of these two proteins in inflammatory signaling pathways. These findings provide valuable insights into the anti-inflammatory potential of these compounds, serving as a foundation for further experimental validation and exploration. Future studies can build upon these results to advance the development of these compounds as effective anti-inflammatory agents.


Assuntos
Ananas , Ananas/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Inflamação
4.
J Food Sci ; 88(11): 4403-4423, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755601

RESUMO

Forward feed multilayered perception and central composite rotatable design were used to model the nonthermal plasma (NTP) experimental data in artificial neural network (ANN) and response surface methodology, respectively. The ANN was found to be more accurate in modeling the experimental dataset. The NTP process parameters (voltage and time) were optimized for pineapple juice within the range of 25-45 kV and 120-900 s using an ANN coupled with the genetic algorithm (ANN-GA). After 176 generations of GA, the ANN-GA approach produced the optimal condition, 38 kV and 631 s, and caused the inactivation of peroxidase (POD) and bromelain by 87.24% and 51.04%, respectively. However, 100.32% of the overall antioxidant capacity and 89.96% of the ascorbic acid were maintained in the optimized sample with a total color change (ΔE) of less than 1.97 at all plasma treatment conditions. Based on optimal conditions, NTP provides a sufficient level of POD inactivation combined with excellent phenolic component extractability and high antioxidant retention. Furthermore, plasma treatment had an insignificant effect (p > 0.05) on the physicochemical attributes (pH, total soluble solid, and titratable acidity) of juice samples. From the intensity peak of the Fourier-transform infrared spectroscopy analysis, it was found that the sugar components and phenolic compounds of plasma-treated juice were effectively preserved compared to the thermal-treated juice.


Assuntos
Ananas , Antioxidantes , Antioxidantes/análise , Ananas/química , Ácido Ascórbico/análise , Sucos de Frutas e Vegetais/análise , Compostos Fitoquímicos
5.
Food Res Int ; 164: 112439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738003

RESUMO

Pineapple is among the most produced and consumed fruits worldwide, and consequently, its agroindustrial production/processing generates high amounts of agricultural waste, which are routinely discarded. Thus, it is crucial to seek alternatives to reuse this agricultural waste that are in high availability. Therefore, this work aims to evaluate the chemical composition of a specific residue (leaves) of seven commercial varieties of pineapples, to attribute high added value uses, and to evaluate its potential as a source of secondary metabolites and minerals. Thereby, twenty-eight metabolites were annotated by UPLC-QTOF-MSE, including amino acids, organic acids, and phenolic compounds. The following minerals were quantitatively assessed by ICP-OES: Zn (5.30-19.77 mg kg-1), Cr, Cd, Mn (50.80-113.98 mg kg-1), Cu (1.05-4.01 mg kg-1), P (1030.77-6163.63 mg kg-1) and Fe (9.06-70.17 mg kg-1). In addition, Cr and Cd (toxic materials) present concentration levels below the limit of quantification of the analytical method (LOQCr and LOQCd = 0.02 mg kg-1) for all samples. The multivariate analysis was conceived from the chemical profile, through the tools of PCA (principal component analysis) and HCA (hierarchical cluster analysis). The results show that pineapple leaves have similarities and differences concerning their chemical composition. In addition, the cytotoxicity assays of the extracts against tumor and non-tumor strains shows that the extracts were non-toxic. This fact can corroborate and enhance the prospection of new uses and applications of agroindustrial co-products from pineapple, enabling the evaluation and use in different types of industries, such as pharmacological, cosmetic, and food, in addition to the possibility of being a potential source of bioactive compounds.


Assuntos
Ananas , Ananas/química , Cádmio , Minerais/metabolismo , Fenóis/metabolismo , Análise Multivariada
6.
J Agric Food Chem ; 71(9): 4069-4082, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827381

RESUMO

Pineapple (Ananas comosus), one of the most flavorful and popular tropical fruits consumed worldwide, is known to contain many volatile organic compounds (VOCs) at varying concentrations. Much attention has been paid to understand which VOC plays a significant role in the sensory aroma notes of the fruit. Though, nearly 480 VOCs have been identified to date using different analytical techniques, only 40 compounds are reported to contribute to the unique flavor of pineapple. A consolidated database of the reported VOCs and key aroma compounds of pineapple is currently not available. This review discusses the available published data regarding the analytical methodologies, volatile profile of different varieties of pineapple at different maturities, and their characteristic aroma compounds. The output of this review is a subset of key pineapple aroma volatiles that can be targeted in analytical method development for utilization in varietal improvement or other research of pineapple.


Assuntos
Ananas , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ananas/química , Compostos Orgânicos Voláteis/química , Frutas/química
7.
Chembiochem ; 24(3): e202200463, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420784

RESUMO

The highly glycosylated spike protein of SARS-CoV-2 is essential for infection and constitutes a prime target for antiviral agents and vaccines. The pineapple-derived jacalin-related lectin AcmJRL is present in the medication bromelain in significant quantities and has previously been described to bind mannosides. Here, we performed a large ligand screening of AcmJRL by glycan array analysis, quantified the interaction with carbohydrates and validated high-mannose glycans as preferred ligands. Because the SARS-CoV-2 spike protein was previously reported to carry a high proportion of high-mannose N-glycans, we tested the binding of AcmJRL to the recombinantly produced extraviral domain of spike protein. We could demonstrate that AcmJRL binds the spike protein with a low-micromolar KD in a carbohydrate-dependent fashion.


Assuntos
Ananas , Lectinas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ananas/química , Carboidratos , Lectinas/química , Manose/química , Polissacarídeos/química , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
8.
Sci Rep ; 12(1): 19384, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371484

RESUMO

The present study proposes the production of vinegars from pineapple processing residues as an eco-friendly strategy for adding value and economic strengthening of the production chain. Pineapple pulp and peel wines were produced and acetificated to vinegar by wild strains of acetic bacteria using Orlean's method (traditional system) followed by enrichment with leaf extract of Red-Jambo, Syzygium malaccense. Appreciable phenolic contents and antioxidant potential were found in pulp and peel vinegars with the added leaf extract. Catechin, epicatechin and caffeic, p-coumaric, ferulic, and gallic acids were the main phenolic compounds found in peel vinegar. The enrichment of the vinegar with the extract promoted an increase in the content of polyphenols (443.6-337.3 mg GAE/L) and antioxidant activity. Peel wines presented higher luminosity (L*) and higher saturation index (C*), and their color tended more toward yellow than pulp wines. Acetification reduced the saturation index (C*) and led to the intensification of the hue angle in the peels vinegar. Each type of pineapple vinegar produced showed biocidal activity against different bacteria and yeast, and the addition of leaf extract potentiated the antimicrobial activity of peel vinegar, especially against Staphalococcus aureus. The vinegars developed could find an attractive market niche in the food sector.


Assuntos
Ananas , Syzygium , Vinho , Ácido Acético/química , Ananas/química , Vinho/análise , Fenóis/química , Antioxidantes/química , Saccharomyces cerevisiae , Extratos Vegetais
9.
Ultrason Sonochem ; 90: 106166, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215891

RESUMO

Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.


Assuntos
Ananas , Malus , Malus/química , Manipulação de Alimentos/métodos , Saccharomyces cerevisiae , Sucos de Frutas e Vegetais , Viabilidade Microbiana/efeitos da radiação , Ananas/química
10.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144767

RESUMO

Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg-1 and 4.75 ± 0.23 × 10-3 µM-1 s-1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL-1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.


Assuntos
Ananas , Cisteína Proteases , Ananas/química , Ananas/genética , Bromelaínas/química , Códon/genética , Glutationa Transferase/genética , Ureia
11.
Nutrients ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893899

RESUMO

Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of -9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.


Assuntos
Ananas , Bactérias , Bromelaínas , SARS-CoV-2 , Ananas/química , Antivirais/farmacologia , Bactérias/efeitos dos fármacos , Bromelaínas/farmacologia , COVID-19 , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos
12.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946738

RESUMO

Colitis is not fully curable, although currently, some treatment options are being adopted. In this study, we investigated the effects of pineapple leaf phenols (PLPs), natural phenol products from pineapple leaves, on DSS-induced colitis in mice. The results showed that PLPs dramatically decreased the inflammatory response by inhibiting NF-κB activation and the secretion of pro-inflammatory factors. Moreover, PLPs provided protection against DSS-induced acute colitis by maintaining epithelial integrity. Caffeic and P-coumaric acids had similar effects and could be the active components responsible for PLPs' effect on colitis. These results indicate that the oral administration of PLPs might be considered as a therapeutic strategy in the treatment of patients with colitis. However, further research on clinical applications and the exact effect of PLPs on colitis is required.


Assuntos
Ananas/química , Ácidos Cafeicos , Colite , Ácidos Cumáricos , Sulfato de Dextrana/toxicidade , NF-kappa B/metabolismo , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Animais , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fenóis/química , Fenóis/farmacologia
13.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946765

RESUMO

The requirements for analytical tools are changing due to the global production chain, the increasing cases of adulteration, and the growing trend towards consumption of plant-based food products worldwide. The assessment of bioactivity of natural foods is currently not a quality criterion, and a paradigm shift is postulated. A non-targeted effect-directed profiling by high-performance thin-layer chromatography hyphenated with five different effect-directed assays was developed exemplarily for the puree and juice products of mango Mangifera indica L. (Anacardiaceae) and pineapple Ananas comosus (L.) Merr. (Bromeliaceae). Several bioactive compounds were detected in each sample. The additional bioactivity information obtained through effect-directed profiles improves, expands and modernizes product control. Non-target effect-directed profiling adds a new perspective to previous target analysis results that can be used not only to ensure health claims based on bioactive compounds, but also to detect unknown bioactive compounds coming from contamination or residues or changes caused by food processing.


Assuntos
Ananas/química , Análise de Alimentos , Manipulação de Alimentos , Sucos de Frutas e Vegetais/análise , Frutas/química , Mangifera/química , Cromatografia Líquida de Alta Pressão , Tailândia
14.
BMC Plant Biol ; 21(1): 550, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809576

RESUMO

BACKGROUND: Pineapple (Ananas comosus L. Merr.) is the third most important tropical fruit in China. In other crops, farmers can easily judge the nutritional requirements from leaf color. However, concerning pineapple, it is difficult due to the variation in leaf color of the cultivated pineapple varieties. A detailed understanding of the mechanisms of nutrient transport, accumulation, and assimilation was targeted in this study. We explored the D-leaf nitrogen (N), phosphorus (P), and potassium (K) contents, transcriptome, and metabolome of seven pineapple varieties. RESULTS: Significantly higher N, P, and K% contents were observed in Bali, Caine, and Golden pineapple. The transcriptome sequencing of 21 libraries resulted in the identification of 14,310 differentially expressed genes in the D-leaves of seven pineapple varieties. Genes associated with N transport and assimilation in D-leaves of pineapple was possibly regulated by nitrate and ammonium transporters, and glutamate dehydrogenases play roles in N assimilation in arginine biosynthesis pathways. Photosynthesis and photosynthesis-antenna proteins pathways were also significantly regulated between the studied genotypes. Phosphate transporters and mitochondrial phosphate transporters were differentially regulated regarding inorganic P transport. WRKY, MYB, and bHLH transcription factors were possibly regulating the phosphate transporters. The observed varying contents of K% in the D-leaves was associated to the regulation of K+ transporters and channels under the influence of Ca2+ signaling. The UPLC-MS/MS analysis detected 873 metabolites which were mainly classified as flavonoids, lipids, and phenolic acids. CONCLUSIONS: These findings provide a detailed insight into the N, P, K% contents in pineapple D-leaf and their transcriptomic and metabolomic signatures.


Assuntos
Ananas/química , Ananas/genética , Produtos Agrícolas/química , Produtos Agrícolas/genética , Genótipo , Metabolômica , Folhas de Planta/química , Transcriptoma , China , Regulação da Expressão Gênica de Plantas , Variação Genética , Nitrogênio/química , Fósforo/química , Folhas de Planta/genética , Potássio/química
15.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681863

RESUMO

This study aims to evaluate the influence of using a bleached Curauá fiber (CF) as filler in a novel rigid polyurethane foam (RPUF) composite. The influence of 0.1, 0.5 and 1 wt.% of the reinforcements on the processing characteristics, cellular structure, mechanical, dynamic-mechanical, thermal, and flame behaviors were assessed and discussed for RPUF freely expanded. The results showed that the use of 0.5 wt.% of CF resulted in RPUF with smoother cell structure with low differences on the processing times and viscosity for the filled pre-polyol. These morphological features were responsible for the gains in mechanical properties, in both parallel and perpendicular rise directions, and better viscoelastic characteristics. Despite the gains, higher thermal conductivity and lower flammability were reported for the developed RPUF composites, related to the high content of cellulose and hemicellulose on the bleached CF chemical composition. This work shows the possibility of using a Brazilian vegetable fiber, with low exploration for the manufacturing of composite materials with improved properties. The developed RPUF presents high applicability as enhanced cores for the manufacturing of structural sandwich panels, mainly used in civil, aircraft, and marine industries.


Assuntos
Ananas/química , Materiais Biocompatíveis/química , Brasil , Força Compressiva , Teste de Materiais , Microscopia Eletrônica de Varredura , Polímeros/química , Poliuretanos , Temperatura , Termogravimetria , Viscosidade
16.
Int J Immunopathol Pharmacol ; 35: 20587384211034686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34387509

RESUMO

INTRODUCTION: Bromelain is a complex mixture of thiol proteases and other non-proteolytic constituents, commercially extracted primarily from the pineapple stem. Evidence from several in vitro and in vivo studies highlights its excellent bioavailability, lack of side effects, and broad spectrum of medical efficacies, of which the antiphlogistic properties are among the most valuable ones. Bromelain has indeed been employed for the efficient treatment of many inflammatory disorders, ranging from osteoarthritis and inflammatory bowel diseases to cancer-related inflammation. METHODS: The aim of the current study was to assess the anti-inflammatory effects of bromelain after gastrointestinal digestion simulated in vitro using stomach, intestinal, and chondrocyte human cellular models (AGS, Caco-2, and SW1353, respectively). RESULTS: We successfully demonstrated the capability of bromelain to reduce an inflammatory stimulus by reproducing its exposure to the gastro-enteric environment in vitro and assaying its effect in human cell lines derived from stomach, intestinal, and chondrocytes. CONCLUSION: Consistently with the previously published data, our work underpins the relevance of bromelain in the development of safer and more effective anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/farmacologia , Bromelaínas/farmacologia , Digestão/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Ananas/química , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/farmacologia
17.
J Food Sci ; 86(9): 4159-4171, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383295

RESUMO

This study was conducted to evaluate consumer profiling of pineapple at five maturity stages using check-all-that-apply (CATA) method and to determine the influence of post-harvest physiological changes on the physical and chemical properties of the pineapple. Nineteen CATA terms describing sensory attributes of pineapples at five maturity stages were generated. Seventy-five consumers were involved in describing the changes in the organoleptic properties of pineapple using CATA questions. The relationship between physicochemical properties and sensory description of pineapples was analyzed using correspondence analysis (CA). The total variance of 97.7% and 92.2% obtained in the CA plot of the physical and chemical properties with the consumer profiling data suggests that consumers have effectively described the pineapple harvested at five maturity stages. Changes in physical and chemical compositions in pineapple upon maturation result in the development of pineapple's desirable organoleptic characteristics, characterized as fresh, attractive, and bright yellowish, with a soft, fibrous, and juicy texture, a sweet odor and pineapple aroma as well as sweet taste. Index 3 pineapple has been described as pale, hard, and crunchy in texture at the early stage of maturity and has a sour taste. The characteristic was transformed to bright yellow, soft, fibrous, and juicy texture after maturation, (25% ripeness onwards), as well as the production of sweet taste and aroma of pineapple. Instrument analysis of yellowness (b value) and carotenoid has strongly influenced the sensory attributes of brightness, freshness, and attractiveness of the pineapple. Changes in total soluble solids (TSS) and a ratio of TSS to total acids (TA) contributes to the development of aromatic compound which increases the appealing quality of the pineapple. Pineapple sensory characteristics, physical properties, and chemical compositions were significantly affected by post-harvest physiology. PRACTICAL APPLICATION: Sensory and instrumental methods were used to construct the properties of pineapple at different stages of post-harvest physiology. This article demonstrates that the Check-all-that-apply (CATA) analysis provides adequate sensory profiling information based on customer perceptions in relation to instrumental details, and it can be extended to other pineapple varieties and citrus fruits.


Assuntos
Ananas , Frutas , Percepção , Ananas/química , Frutas/química , Humanos , Paladar
18.
Int J Biol Macromol ; 187: 223-231, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34310991

RESUMO

This research study explores the fabrication of polyvinyl alcohol (PVOH) and corn starch (ST) with pineapple peel extract (PPE) as a natural antioxidant agent, which is an abundant by-product from the food processing industry via casting method. The effects of PPEs concentration (5%, 10%, 15%, and 20%) on the antioxidant capacity, optical, thermal, mechanical, barrier properties, and changes in PVOH-starch molecular structure of PVOH/ST films were investigated. The results revealed that with the increasing concertation of PPEs, prepared films' thickness and water vapor permeability slightly increased. Elongation at break of PVOH/ST films was also enhanced with PPEs concentration. All PPEs incorporated films exhibited enhanced thermal stability as the degradation occurred above 300 °C. The addition of PPE to PVOH/ST films remarkably increased the antioxidant properties. Finally, prepared PVOH/ST/PPE films demonstrated to be a capable material for developing active biodegradable packaging material due to its proven antioxidant activity and mechanical property, which can be helpful in the packaging of food products that gets spoiled due to oxidation reactions.


Assuntos
Ananas/química , Antioxidantes/química , Embalagem de Alimentos , Extratos Vegetais/química , Álcool de Polivinil/química , Amido/química
19.
Fish Shellfish Immunol ; 115: 212-220, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146675

RESUMO

Eight weeks feeding experiment was managed to evaluate the impacts of dietary addition of pineapple peel powder (PAPP) and Lactobacillus plantarum CR1T5 (LP) individual or mixed on growth performance, skin mucus and serum immunities, as well as disease resistance of Nile tilapia. Fish (average weight 20.91 ± 0.11 g) were fed four diets: Diet 1 (0 g kg-1 PAPP and 0 CFU g-1 L. plantarum, Diet 2 (10 g kg-1 PAPP), Diet 3 (108 CFU g-1L. plantarum), and Diet 4 (10 g kg-1 PAPP + 108 CFU g-1L. plantarum). Serum and mucus immune responses, as well as growth rate, were assessed every 4 weeks. Ten fish were chosen for the challenge test with Streptococcus agalactiae after 8 weeks post-feeding. The findings showed that PAPP and/or LP diets increased (P ≤ 0.05) growth performance, skin mucus, and serum immune responses. The best data were obtained in fish fed a mixture of PAPP and LP. Nevertheless, no variation (P > 0.05) was recorded between groups fed PAPP or LP. The relative survival percentage (RSP, %) in Diet 2, Diet 3, and Diet 4 was 46.15%, 50.0%, and 73.08%. Fish fed mixture of PAPP + LP recorded the best (P < 0.05) survival rate versus other treatments. The current findings recommended using a mixture of PAPP and LP as promising functional additives for aquaculture practice.


Assuntos
Ananas/química , Ciclídeos/imunologia , Resistência à Doença , Imunidade Inata , Lactobacillus plantarum/química , Probióticos/metabolismo , Ração Animal/análise , Animais , Aquicultura , Ciclídeos/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/efeitos dos fármacos , Frutas/química , Imunidade Inata/efeitos dos fármacos , Pós/administração & dosagem , Pós/química , Probióticos/administração & dosagem , Distribuição Aleatória
20.
Curr Issues Mol Biol ; 43(1): 93-106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067064

RESUMO

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.


Assuntos
Ananas/química , Bromelaínas/farmacologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Rizoma/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Bromelaínas/química , Regulação para Baixo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...